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Abstract 5 

This work deals with the simple shear flow of neutrally buoyant, rigid, frictionless spheres 6 

immersed in a viscous fluid that exchange momentum through inelastic collisions. We show 7 

how kinetic theories are able to provide a full analytical description of the flow, once the 8 

influence of the viscous fluid is taken into account in a simple way through the dependence of 9 

the collisional coefficient of restitution on the Stokes number. This allows the capture of the 10 

characteristics of the experiments performed by Bagnold sixty years ago and the 11 

interpretation of the macro-viscous and inertial regimes described by the same author as the 12 

limits for the coefficient of restitution equal to zero and to the value valid in absence of the 13 

viscous fluid, respectively. 14 

Introduction and theory 15 

The simple shear flow (SSF) is the obvious configuration to study the response of fluids to 16 

deformation. Thus, it has been largely investigated, experimentally, numerically and 17 

theoretically, to determine the appropriate rheology of granular gases (Savage and Sayed 18 

1984; Hanes and Inman 1985; GDR MiDi 2004; da Cruz et al. 2005; Mitarai and Nakanishi 19 

2007; Orlando and Shen 2012). 20 

Although theories that take into account the role of frictional contacts among deformable 21 

particles exist (Berzi et al. 2011), let us focus, for sake of simplicity, on the case of 22 
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frictionless, rigid spheres. First, we briefly recall the case of dry SSF, already analyzed in 23 

great detail (GDR MiDi 2004; da Cruz et al. 2005; Mitarai and Nakanishi 2007). 24 

A certain amount of granular material, characterized by a constant volume concentration  25 

and composed of mono-dispersed rigid spheres of diameter d and density p, is confined 26 

between two parallel plates, and homogeneously sheared (  being the shear rate), in absence 27 

of external forces (Fig. 1). The shearing induces inter-particle collisions, that we characterize 28 

through a coefficient of restitution, e (ratio of pre- to post-collisional relative velocity 29 

between two colliding particles). Macroscopic shear stress, s, and pressure, p (the isotropic 30 

component of the normal stresses) result from the statistical average of the momentum 31 

exchange due to collisions (Goldhirsch 2003). Hence, s and p are unique functions of the five 32 

independent variables, , d, p,  and e. Using the particle diameter and density and the 33 

shear rate to non-dimensionalize the problem, we reduce the number of independent variables 34 

to two, i.e.,  and e. Conversely, the shear stress and the pressure must be substituted by two 35 

non-dimensional numbers. The French group GDR MiDi (2004) have suggested to use the 36 

particle stress ratio, , and the inertial number, , respectively, for 37 

this purpose. The rheology of the dry granular material is fully determined once the two 38 

functions,  and , are known. That is, in dry condition, every value of 39 

concentration corresponds to a certain value of the particle stress ratio (Mitarai and Nakanishi 40 

2007), given the value of the coefficient of restitution, which is a material property. Of 41 

course, one can use the inertial number as independent variable instead of the concentration, 42 

leading to the theoretically equivalent problem of determining the two functions  43 

and . In experiments and numerical simulations, the two cases are distinguished 44 

and called concentration- and pressure-imposed SSF, respectively. 45 
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Let us see now what changes when the particles are immersed in a viscous fluid, as in 46 

Bagnold’s pioneering experiments (Bagnold 1954). Bagnold’s idea was to use neutrally 47 

buoyant spheres immersed in a fluid to eliminate the influence of gravity and approximate the 48 

ideal conditions of SSF. The presence of the interstitial fluid, though, introduces an additional 49 

variable to the problem, the fluid viscosity . Hence, a non-dimensional number, representing 50 

the ratio of the particle inertia to the fluid viscous forces, must be included as an additional 51 

independent variable of the problem. This additional degree of freedom implies that, unlike 52 

the dry case, infinite values of the particle stress ratio are possible at a given concentration 53 

(Bagnold 1954). 54 

The expression for  can be easily obtained from kinetic theories (Mitarai and Nakanishi 55 

2007), even when a viscous interstitial fluid is present. The pressure and the shear stress, in 56 

the dense limit (Jenkins and Berzi 2010), i.e.,  greater than say 0.4, and using the 57 

constitutive relations of Garzo and Dufty (1999), read 58 

 , (1) 59 

and 60 

 , (2) 61 

respectively, with 62 

 . (3) 63 

In Eqs. (1) and (2), T is the granular temperature, mean square of the particle velocity 64 

fluctuations, and g0 is the radial distribution function at contact (Chapman and Cowling 65 

1970). The balance of fluctuating energy of the particles provides the required equation to 66 

determine the granular temperature. In the case of SSF, that equation reduces to a balance 67 

between energy production and dissipation, 68 
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 , (4) 69 

where the first and the second term on the right hand side represents the rate of energy 70 

dissipation due to the inelastic collisions and the viscous drag on the particles (Hsu et al. 71 

2004), respectively. There, L is the correlation length, the measure of the correlation among 72 

the particle velocity fluctuations whose effect is in diminishing the energy dissipated in 73 

collisions (Jenkins 2007). Its expression is, however, available only for some values of the 74 

coefficient of restitution (Jenkins and Berzi 2010, 2012); further investigations are needed to 75 

determine the complete dependence of L on e. In view of the above mentioned limitation, and 76 

for sake of simplicity, here we take L = d. An expression for  is, in principle, available 77 

(Hsu et al. 2004), although there are some issues concerning, for instance, the dependence of 78 

the drag on the particle concentration and the velocity fluctuations. Here, we prefer to adopt a 79 

simpler approach. The presence of the viscous fluid damps the inter-particle collisions, 80 

therefore enhancing the apparent inelasticity of contacts (Joseph et al 2001; Yang and Hunt 81 

2006). As in Berzi (2011), we set  = 0 in Eq.(4), and take the coefficient of restitution 82 

dependent on the Stokes number, St, which represents the ratio of particle inertia to the 83 

viscous forces. With this, Eqs. (3) and (4) show that the granular temperature is an algebraic 84 

function of the shear rate, 85 

 . (5) 86 

The particle stress ratio , therefore, results, from Eqs. (1), (2) and (5), 87 

 . (6) 88 

The fact that  results independent on  in the dense limit, in contrast with experiments and 89 

numerical simulations on dry SSF (GDR MiDi 2004; Mitarai and Nakanishi 2007), is actually 90 
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a strong argument in favor of the introduction of the correlation length in Eq. (4). We use the 91 

expression suggested by Barnocki and Davis (1988) for the dependence of the coefficient of 92 

restitution on the Stokes number, 93 

 , (7) 94 

where  is the value of the coefficient of restitution in dry condition (i.e., when ), and 95 

, as in Berzi (2011). In the expression of the Stokes number, the square 96 

root of the granular temperature is taken to be a measure of the relative velocity between 97 

colliding particles (Chapman and Cowling 1970; Armanini et al. 2005). Bagnold (1954) used 98 

the following non-dimensional number, 99 

  (8) 100 

to measure the importance of particle inertia to the fluid viscous forces, instead of the Stokes 101 

number. In Eq. (8), M is the maximum packing concentration of the granular material (equal 102 

to 0.74 for rigid spheres). Using Eqs. (5), (7) and the expression for the Stokes number, 103 

Eq. (8) becomes 104 

 , (9) 105 

where we set the coefficient of proportionality, a, on the basis of comparisons with 106 

experiments. 107 

Results and discussion 108 

Eqs. (6) and (9) allow to determine the particle stress ratio, , and the Bagnold number, N, 109 

at a given concentration, for every value of the coefficient of restitution e from 0 to . Fig. 2 110 

shows the experimental results of Bagnold (1954), as reported by Hunt et al. (2002), 111 
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performed with neutrally buoyant wax spheres (p = 1000 kg/m
3
 and d = 0.0013 m) in water 112 

( = 0.001 Pas) or in a mixture of glycerin, water and alcohol ( = 0.007 Pas), in terms of  113 

versus N, for two different values of concentration (0.375 and 0.555). 114 

We set  = 0.95 - close to the values appropriate for spheres made of glass and cellulose 115 

acetate measured by Foerster et al. (1994) - and a = 5 to obtain the theoretical predictions of 116 

Fig. 2. We must emphasize that the exact quantitative agreement between the theory and the 117 

experiments is beyond the scope of the present work, so that the values of  and a must be 118 

taken as purely indicative. Indeed, as already mentioned, the theory is not strictly rigorous, 119 

because of the rough simplification of neglecting the velocity correlation in Eq. (4), which is 120 

however present only at concentration larger than 0.49 (Jenkins 2007). On the other hand, 121 

also the correctness of Bagnold’s experimental findings have been criticized (Hunt et al. 122 

2002), thus making meaningless the construction, at this stage, of too refined a theory. 123 

Nonetheless, the present simple theory captures well the qualitative behavior of the 124 

experimental results. The decrease of the particle stress ratio with the Bagnold number can be 125 

explained with the associated increase of the apparent coefficient of restitution e; indeed, it is 126 

well known that lower values of the particle stress ratio pertain to less dissipative particles 127 

(Mitarai and Nakanishi 2007). Furthermore, it seems natural (Fig. 2) to relate the constant 128 

values of the particle stress ratio that Bagnold found appropriate for the macro-viscous and 129 

inertial regimes (Bagnold 1954), with the values obtained by setting e = 0 and e =  in 130 

Eq. (6), respectively. We must be cautious in making statements about the macro-viscous 131 

regime based on the present theory, given that we assume that the microscopic particle inertia 132 

still plays the major role in determining stresses (the constitutive expressions for the particle 133 

shear stress and pressure are indeed both proportional to the particle density). However, the 134 

particle stress ratio does not depend on the particle density, and Fig. 2 seems to suggest that 135 

kinetic theories may be used also to obtain information about the behavior of the particle 136 
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stress ratio at vanishingly small values of the Stokes number (or, equivalently, of the Bagnold 137 

number). We leave the analysis to future works. 138 

Conclusions 139 

We have focused on the simple shear flow of granular-fluid mixtures to show that their 140 

behavior can be described in the framework of kinetic theories, if the influence of the fluid 141 

viscosity on the collisional coefficient of restitution is taken into account through its 142 

dependence on the Stokes number (the measure of the ratio between the particle inertia and 143 

the fluid viscous forces). Kinetic theories predict that the ratio of particle shear stress to 144 

particle pressure decreases when the coefficient of restitution increases; given that the latter 145 

monotonically increases with the Stokes number, this explains why the experimental particle 146 

stress ratio decreases with the physically-equivalent Bagnold number. The present analysis 147 

also suggests that the well known macro-viscous and inertial regimes introduced by Bagnold 148 

(1954), whose work is at the origin of the modern literature on both debris flows (Berzi et al. 149 

2010) and dense suspensions (Boyer et al. 2011), can be interpreted as the limits for the 150 

Stokes-dependent coefficient of restitution that goes to zero and to the value of the dry 151 

granular material, respectively. 152 
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Figure 1. Sketch of the SSF configuration. 

 

Figure 2. Experimental (symbols, after Bagnold 1954) and theoretical (lines) particle stress ratio as function 

of the Bagnold number. Experiments refer to wax spheres in water (open symbols) and wax spheres in a 

mixture of water, glycerin and alcohol (filled symbols), for  = 0.375 (squares) and  = 0.555 (circles). The 

theoretical predictions are for  = 0.40 (dashed line) and  = 0.56 (solid line). Also shown are the predicted 

particle stress ratios when e = 0 (dot-dashed line) and e =  (dotted line). 
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